Understanding results of box calculation Hw2: nucleon evolution in a mean -field potential

March 27-30, 2017 FRIB-MSU, East Lansing, Michigan, USA

Maria Colonna

INFN - Laboratori Nazionali del Sud (Catania)

Box simulations: test of m.f. dynamics

 $\rho(z,t=t_0) = \rho_0 + a_\rho \sin(k_i z)$ $k_i = n_i 2\pi/L \qquad a_\rho = 0.2 \rho_0$

Fermi sphere defined as a function of the local density

• Study the time evolution of $\rho(z)$

- -- Symmetric matter --
- Only mean-field potential
- No surface terms
- Compressibility K = 240 MeV

An example: SMF results

	BUU-type		QMD-type
1	BUU-Swagato	1	IQMD-BNU
2	IBUU	2	IQMD-IMP
3	Gibuu	3	ImQMD-CIAE
4	pBUU	4	TuQMD
5	SMF	5	UrQMD
6	RVUU		
7	SMASH		

Analysis of the results performed by Yingxun Zhang and Yongjia Wang

BUU-like: 10 runs with 100 test particles Average $\rho(z,t)$ n = 1 MD-like: 200 runs 0.22 t=20 fm/c t=0 fm/c 0.20 BUU 0.18 Gibuu 0.16 IBUU ImQMD-CIAE 0.14 IQMD-BNU **IQMD-IMP** 0.12 $\rho_z \, (\text{fm}^{-3})$ pBUU RVUU 0.10 SMF t=40 fm/c t=60 fm/c 0.20 TuQMD UrQMD 0.18 SMASH 0.16-0.14 0.12-0.10-5 10 15 5 10 15 0 0 20 z (fm) z (fm)

First formulation of Homework #2

Zoom at 40 fm/c : Different oscillation frequency in the different models

First formulation of Homework #2

First formulation of Homework #2

Box simulations: test of m.f. dynamics: space Fourier transform

Second formulation of Homework #2: Longer final time and results given each 0.5-1 fm/c

$$\rho(z,t=t_0) = \rho_0 + a_\rho \sin(k_i z)$$

 $k_i = n_i 2\pi/L$

 $a_{\rho} = 0.2 \rho_0$

- Study the time evolution of ρ(z) on a longer time interval
- Extract the Fourier transform in space

 ρ_k (t) = $\int dz \sin(kz) \rho(z,t)$

> significant contribution only for $k = k_i$ (to be checked)

damped oscillations are expected

Role of non-excited modes

Output rho(z,t) with 1 or 0.5 fm/c

	BUU-type		QMD-type
1	BUU-Swagato	1	IQMD-BNU
2	IBUU	2	IQMD-IMP
3	Gibuu	3	ImQMD-CIAE
4	pBUU	4	TuQMD
5	SMF	5	UrQMD
6	RVUU		
7	SMASH		

Time evolution of Fourier transform ρ_k

Second formulation of Homework #2: Longer final time and results given each 0.5-1 fm/c

$$\rho_k(t) = \int dz \sin(kz) \rho(z,t) \qquad k = n 2\pi/L$$

Different oscillation frequency in BUU-like

Larger damping and structureless fluctuations In QMD-like

Box simulations: test of m.f. dynamics: time Fourier transform

$$p(z,t=t_0) = \rho_0 + a_\rho \sin(k_i z)$$

$$k_i = n_i 2\pi/L \qquad a_\rho = 0.2 \rho_0$$

• Fourier transform in time: *extract the oscillation frequency*

 $\rho_k(\omega) = \int dt \cos(\omega t) \rho_k(t)$

$$\rho_k$$
 (t) = $\int dz \sin(kz) \rho(z,t)$

 $k = n 2\pi/L$

SMF simulations

Fourier transform with respect to time

 $\rho_k(\omega) = \int dt \cos(\omega t) \rho_k(t)$

 $E = hbar \omega$

 $\implies \omega / (k v_F) \sim 1$ n = 1, E ~ 18 MeV

Linearized Vlasov equation \rightarrow stationary solutions (oscillations) \rightarrow extract the oscillation frequency

analytical relation between oscillation frequency ad compressibility **K**

$$s = \omega / (k v_F)$$

Landau parameter $F_0 = K / (6 \epsilon_F) - 1$ K = 240 MeV \rightarrow $F_0 = 0.1$

s ~ 1 n = 1, E ~ 18 MeV

Evolution of Momentum Distribution

Conclusions

□ Model dependence of the oscillation frequency: Induced surface effects ? $F_0 \rightarrow F_0 g(k)$

Definition of local density and density-dependent mean-field potential should be checked and compared for all models

□ The frequency extracted for BUU-lile models is close to the analytical predictions

□ Large damping observed for QMD-like models, probaly caused by larger surface effects and by fluctuations

Details about the procedure used to evaluate the density, in each model, should be given : how do induced surface effects impact the oscillation frequency ?

□ The evolution of the momentum distribution in some models needs to be understood

More damping in QMD-like models: why ?
 The finite number of test particles (1 in this case) may act as a spurious collision term, driving the system towards classical behavior (see Reinhard & Suraud, '90)

Surface effects may also be different

Possible further investigations for HW 2

□ In BUU-like approaches, check the sensitivity of results to test particle number

□ Increase the compressibility **K**: more robust oscillations

Investigate the variance of the density fluctuations at equilibrium: Ex. Non-interacting Fermi gas at temperature T: σ (V) = ρ / V * (3T) / (2 ε_F)

Investigate unstable conditions: fluctuations will grow
 Investigate growth time and fragment formation

Switch-on symmetry potential and investigate isovector fluctuations

Combine mean-field and collision integral in the study of density oscillations

Propagation of fluctuations by the unstable mean-field

Box calculations : $\rho = 0.05$ fm $^{-3}T = 3$ MeV

